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Block ideals and arithmetics of algebras
by

W. E. Jenner 1)

Most investigations on arithmetics of algebras up to the present
time have been concerned only with maximal orders (cf. [1], [5],
[6], [8]). In this case, the most agreeable sort of ideal theory
obtains and the results have had fruitful applications to the theory
of simple algebras and to class field theory (cf. [9] ). One of the
first writers to discuss non-maximal orders seems to have been
H. Fitting [7]. Aside from its intrinsic interest, a study of the non-
maximal case would be profitable in view of the connection be-
tween the arithmetic in a group ring and the theory of modular
representations which has been elucidated by R. Brauer [4].

This paper lays no claim to originality and is intended only to
give a systematic account of results that are more or less already
known, although some are not in the literature. The paper is
divided into two parts since a considerable portion of the ideal
theory, that of part I, is applicable to rings of a broader category
than orders.
The writer is indebted to Professor Richard Brauer, under whose

direction this investigation was undertaken, for stimulating
advice and for access to certain of his unpublished results.

Part I. Block Ideals

1. Direct intersections.

Throughout Part 1 it will be assumed that is a ring with unit
element 1. The discussion is restricted to two-sided ideals of D

except where explicit mention is made to the contrary.
Ideals a and b are said to be relatively prime if (a, b) = (1) = D.
An ideal a is a direct intersection of ideals b1,..., b, if

1) This paper is based on the author’s doctoral dissertation, University of

Michigan, 1952.
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These conditions will be indicated by writing a = n bi.

An ideal is called a block ideal if it cannot be expressed’as a
direct intersection of two or more ideals.

The following results of this section are elementary but, for the
sake of completeness, proofs are given, except for Theorem 1.1.1
the proof of whieh is trivial but rather tedious.

LEMMA 1.1.1: Il a =  bi and bi = n ci03C3, then a =  ci03C3.

PROOF: Clea.rly a = n ci03C3. If i ~ j, then (ci,, cj03BB)  (lji, lj;) =(1)
i, 0,

If (J =1= A, then (ci,, cj03BB) = (1). Therefore a =  ci03C3.

LEMMA 1.1. 2 : Il (a, c) = (b, c) = (1), then (ab, c) = (ba, c) =
(a nb, c) = (1). 
PROOF: This follows on observing that (a, c) . (b, c) =

(b, c) . (a, c) = (1) and (ab, ba)  a ~ b.

LEMMA 1.1.3 : Il a = bi i and b =  bi, c =  bi

where 1  l’  s, then a == D n c.

PROOF: This follows by induction from the previous lemma.
LEMMA 1.1.4: Il a1, ..., ar a1’e relatively prime in pai1’s, then

r

n a, = 03A3a03C0(1), ... a03C0(r) where 03C0 ranges over all permutations of

1, 2, ..., r.

PROOF: For r = 2, al n a2 = (ai ~ a2). (a1, a2)  (a1a2, a2a1) 
al na2’ and so al ~ a2 = (ala2, a201). The lemma follows by in-
duction.

r ..

THEOREM 1.1.1: Il a =  bi, then D/a = 1/a + ... + r/a

where i = bj. Conversely, i f DIa = 1/a + ... + r/a, then

- n bi where h i = 03A3 j. Furthermore, these construction

are reciprocal.
r

COROLLARY 1.1.1: Il a = n Di and 1...., er are arbitrary

elements of ü, then the system of congruences 03BE ~ (mod Di) where
i = l, 2, ..., r, has a solution in D and the solution is unique
mod a.

r

COROLLARY 1.1.2: Il a = n lji, then the lji C07nlnute inod a.
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As remarked above, the proof of Theorem 1.1.1 will be omitted.
r

LEMMA 1.1.5: Il a =  bi and m is any ideal, then either

(a, m) = (1) or (a, m) = r:’. (b03C3, m) where a ranges over the set S

o f indices for which (bo, m) ~ (1).
PROOF: Suppose (a, m) ~ (1). Then by lemma 1.1.2, S is not

empty. Clearly (a, m)  (b03C3, m) 1;here a ranges over S. On the
other hand, 03A3(b03C0(1), nt ) ... (bn(r)’ m)  (a, m) where a ranges over
all permutations of 1, ..., i- and the lemma follows from lemma
1.1.4.

LEMMA 1.1.6: Il lji Ç b’i for i = 1, 2, ..., rand n b, is direct,

then n bi C n b’ except when bi = b; f or i = 1, 2, ..., r.

PROOF: If ~ b, = n b’i, then by lemma 1.1.5, bi r) (Dl, bi)
where J ranges over the set of indices for which (b§, bi) ~ (1).
Clearly a = i is the only possibility and so b, == bï for i = 1, 2,..., r.
LEMMA 1.1.7: Il (b, c) = (1), (ac, m) = (ca, m) and (ab, m) =

(ba, m), then (a(b ne), m) == ((b nc)a, m).
PROOF: It suffices to consider the case m = (0). Then

b mc = (bc, cb) by lemma 1.1.4 and a(b ne) = a(bc, cb) =
(abc, acb) = (bca, cba) = (b ~ c)a.
LEMMA 1.1.8: Il (a, b) = (1) and (ab, m) = (ba, m), then f or

any ideals 91 D a and B  b, (UB, m) = (BU, m).
PROOF: It is sufficient to consider tlie case m = (0) and to

show that if (a, b) = (1), ab = ba and a  U, then 9tb = bU. If
y E U, then there exist elements oc E a and fl e b such that y oc + 03B2.
Now P = y a E h n 2t and so y E a + (b ~ U). Therefore

U = a + (b n 2I). Now (b n21)b = (a,b). (6 ~ U)b = a(b n21)b +
+ b(b ~ U)b  ab + 69t C bU and so Wb C: bW. Similarly bU  Ub
and the lemma follows.

2. Block Ideal Decompositions.

From theorem 1.1.1, it follows that an ideal a is a block ideal if
and only if 0/a is indecomposable (in the sense of direct sum). It
is well-known that any ring with unit element which satisfies the
maximum condition for two-sided ideals has a unique decomposi-
tion into a direct sum of indecomposable ideals. Furthermore, if
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the minimum condition holds for left (right) ideals which contain
a given two-sided ideal a of D, then the maximum condition holds
for two-sided ideals containing a, provided D contains a unit ele-
ment. These statements, together with theorem 1.1.1, imply
THEOREM 1.2.1: Let a be an ideal of D such that either (i ) the

maximum condition holds for ideals containing a or (ii) the minimum
condition holds for left (right) ideals containing a. Then a has a
unique expression as a direct intersection of block ideals.

r

LEMMA 1.2.1: Il a =  bi and m is a block ideal containing a,

then m contains exactly one o f the bi.
PROOF: By lemma 1.1.5, m = (a, m) = n (b03C3, m) where a

ranges over the values of i for which (bi, m) ~ (1). Since m is a
block ideal, there can be only one term (b03C3, m) ~ (1). Then
m = (b03C3, m) and hence b03C3  tn. On the other hand, no bj for

i ~ 03C3 is contained in m since m ~ (1).
r s

LEMMA 1.2.2: Il a = n bi = n Ca where the c,, are block ideals,

then each bi is contained in at least one ca and each bi is the inter-
section of the ca containing it.

PROOF: By lemma 1.2.1, each Ca contains exactly one bi. If

some particular bi is relatively prime to all ca then (b,, a) = (1)
by lemma 1.1.2, a contradiction. Therefore there exists some a
for which (bi, ca) ~ (1). Now each Ca contains some b; which

clearly must be this particular bi. This shows that each bi is con-
tained in some Ca. Now let bi  ~ c(i) where (i) ranges over the

set of indices  for which bi  Ce. Now a =  bi  [c(i)]
= a and so by lemma 1.1.6, bi = n ce(,).

e(i)

REMARK: Lemma 1.2.2 can be used to give another proof of
the uniqueness of block ideal decompositions.
LEMMA 1.2.3: Il a and b are block ideals and the maximum

condition holds f or ideals containing a ~ v, then either a ~b is direct
or a ~b is a block ideal,
PROOF: If a ~b is not a block ideal, then it has a representation

as a direct intersection of block ideals and by lemma 1.1.3 one may
assume a ~b = el n C2. By lemma 1.2.2, cl Ç a, say, and C2 Ç b.
By lemma 1.1.6, a == Ci and b = C2 and so the intersection a ~b is
direct.
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THEOREM 1.2.2 : Il a = ~ Ca where the maximum condition

holds for ideals containing a, and where the ca are block ideals, then
the representation of a as a direct intersection of block ideals can be
obtained by distributing the ca into minimal systems Si, S2, ..., Sr
such that every ea E Si i is relatively prime to every c., E Sj for i ~ j.

r

I f bi is the intersection o f the ca in Si, then a = n bi.

PROOF: Suppose Slconsists of the elements Cl, C2, ..., Cm. Now
cl cannot be relatively prime to all of C2, ..., 1 Cm in view of the
minimal property of Si. If (ci, c2) =1= (1), say, then by lemma 1.2.3,
c’2 = ci n C2 is a bloek ideal and by virtue of lemma 1.1.2,51 may be
replaced by S’1 = {c’2, c3,..., cm}. It is easily seen that S’1 has the
required minimal property and that repetition of this process
will lead to the desired result.

r

THEOREM 1.2.3: Il a = ~ bi where the bi are block ideals, then
i=l

any representation of a as a direct intersection of ideals cl, c,,
is obtai-ned by distributing the bi into disjoint subsystems Tl, T2, ...,
T s and taking for Ca the intersection of the bi in Ta.
The proof follows by an elementary argument from lemmas

1.1.3 and 1.2.2.

3. Prime Ideals.

Throughout this section it will be assumed that a is an arbitrary
but fixed ideal of 0 and that the minimum condition holds for
left (right) ideals of 0/a. In non-commutative ideal theory an
ideal p is said to be prime if whenever be  p for any two ideals
b and C, then either b  p or C  p. It is easily shown, using the
Wedderburn-Artin structure theorems, that an ideal p D a is

prime if and only if it is maximal (cf. [6]). The radical n of a is
the ideal n of D such that n/a is the radical, in the Wedderburn-
Artin sense, of DIa.
THEOREM 1.3.1: Il n is the radical of a, then D/n = D1/n + ... +

ûsfn ’lVhe1’e the Difn are simple two-sided ideals. There are exactly
s prime ideal divisors of a. Il s &#x3E; 1, they are pi = 03A3Dj and

n =  pi. Il s = i, then tt is the only prime ideal divisor of a.
i=l

This is well known; it follows easily from the Wedderburn-
Artin structure theorems.
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Let a = n bj be the représentation of a as a direct intersection

of block ideals. The ç prime idéal divisors i of a are distributed
into r blocks Bj, the block B, consisting’ ot’ the set of a.ll ,Pi which
divide a given ry. Onc now proceeds to investigate the relations
hetwcen tlie block idéal conlponents aiid the prime ideal divisors
of a given ideal.

If the unit cleineiit 1 of C/a is exl)rcssed as a sum of primitive
idempotents, 1 = 03B51 + ... + 03B5k, tlien tlcrc exist elements BI’ ..., 
03B5k in C with ej in thé residue class Ei such that 1 = 03B51 + ... + 03B5k
where 03B52i 03B5i (niod a), si ~ 0 (mod a), 03B5i03B5j == 0 (mod a) for i ~ j..
and no 03B5i cam bc cxpresscd as a sum of two othcr elements with
these properties. Thc left idéal D03B5j is primitive mod a in the sensé
that if b is a left ideal such that a Ç b C DE; + 0, then 6 C n and
sn b is nilpotent mod a (cf. f2]).

LEMMA 1.3.1: Lrt c1, c2,..., c,, be a system of ideals surh that

Then each 03B5 belongs to all the ci except one; for each ci thcre evist
certain oi the 03B5 which do ’not belong to it. Il i i.s the su tn of those
a" not in ci, then 1 = 03B61 + .... + l:1I" 03B6i ~ 1 (mod ci) and 03B6i ~ 0
(mod cj) for i ~ J.

PROOF: No Ci contains all -,, simcc ci ~ (1). Suppose some 03B5e
is in neither ci nor C, for some i ~ j. 1"hcn D03B5 = (ci, cj)03B5 =

(ci03B5, cj03B5)  (c, ~039403B5, c, ~D03B5)  n, a contradiction. Tt follows

that for i ~ j, 03B6j and l:j can have no summand 03B5 in common. It
follows from condition (iii) that every 03B5 appears io some 03B6i. Thc
last staternemt of the lcmma is clear.

r

If a - n bi where tlzc bi arc block ideals, tlicn thcrc cxist cle-

ments ~1, ..., 03B3r (the 03B6i for thc case Ci = bi) sich that 1 ==

= 111 + ... + ~03C1 ~i =- 1 (mod bi), ~i ~ 0 (mod bj) for i --pj.
Fiirtherniore thc ~i arc orthogonal idenipotcntx mod a and they
lie in tlie ccntcr of £ mod a. If p1, ..., .pk arc the prime ideal divi-
sors of a, then thcrc cxist clemeiits ôi, ..., (5k (thc 03B6i for ci = pi)
sich that 1 = 03B41 + ... + ô,, (5i ~ 1 (mod pi), 03B4i ii o (mod pk)
for i ~ j and the b; arc orthogonal idempotents mod a.
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Lct 1, ..., s be the prime ideals in the block Bi. If 03B5 E ~ .pi’
then 03B5 is in thc radical of bi so that 03B503BB ~ bi for some A &#x3E; 0. But

03B503BB - 03B5 ~ a Ç b, and so êi) E bi. Thercfore, if e occurs as a summand
in i9 it does likewise in some 03B4j corresponding to one of 1, ..., ,ps.
Thc converse is trivial and ao

(1) ~i = b1 + ... + 03B4s.
From tlie fact that if Ee occurs as a sunimand in some ôjg it aiso

occurs in ~i, and since the ~i are in tlie ccntcr of D mod a, it
follows tha,t

(2) ~i03B4j ~ 03B4j~i ~ 03B4j ( ln od t1).
Two prime ideals  a and 03C3 D a arc said to bc connected

directl2, if either or 03B403C3D03B4 is Hot contained in a. They are
said to be co.nnerted if either  = 03C3 or a chain , ..., i,..., 03C3
of primc ideals r ~ a can be found such that any two adjacent
e1CJllents in the chain arc conncctcd directly.
THEOREM 1.3.2: Tico prirnc idcal divisors o f fi belong to the

same bloc/B. if and only -i f they are connected.

PROOF: Suppose thé primc ideals 1, ..., s divide ct and arc

connected. 13y lemma 1.2.1, eacli pj divides some bi, so suppose
b1  1, b2  2 where 1 and 2 arc connected directly, say 03B4~D03B42
is mot in a. By relation (2) above, ~1D~2 is not in a. But nic b;
for i * i and so ~1D~2 C a, a contradiction. This shows that

,Pl...... p, ail belong to the same block.
Now let 1...,s bc the prime ideals in Bl. Suppose these i

are oot connected, say 03B4jD03B4j + 03B4jD03B4i  a for i = 1, 2, ..., t;

j = t + 1, ..., s; t  s. Then YIÜY2 + 03B32D03B31  a where 03B31 =

- 03B41 + ... + (5f, 03B32 = 03B4t+1 + ... + ()R’ Set qi = 61 + yi-Oyi i for

i = 1, 2. If’ (5, E q1, then 03B4s E b103B4s + 03B31D03B3103B4s + Q Ç b1 since

03B3103B4s ~ a  bl. Thcrcforc q1 ~ C. Similarly q2 *- ’D. Thc sum of those
03B5 which are in b, is 1’3 = l - "11. Now q1D = (b, + YIÛYl)Ü
(03B31 + 03B32 + 03B33)  fi + 7iC7i = q1 since /iD/2 C a Ç b, and 03B33 ~ b1.
Similarly Dq1  q1 and Dq2D  q2. Now 1 == YI + 03B32 + Y3 with

03B33 ~ b, and so (Q1’ Q2) = (1 ). By lemma 1.1.4, q1 n q2 = (Qlq2’ q2ql)
C b1 Ç ql n Q2 and so b1 = qi n q2, a contradiction. It follows that
tlie prime ideals in 131 arc connected. The same argument work,
of course, for a n y Bi and so the theorem follows.

1Bvo prime ideals p  a and 03C3 2 a are said to be related if either
they arc equal or a chain 1JQ, ..., p,,, ..., p, of prime ideals pv 2 a
can bc found such that no tw-o adjacent elements of the chain
commute mod a.
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THEOREM 1.3.3: Two prime ideal divisors o f a belong to the

same block i f and only il they are related.
PROOF: It follows from lemma 1.1.8 and corollary 1.1.2 that

two related prime ideals belong to the same block. Now let
r s

a - n lji where the b, are block ideals and let n = n ,p; be

the radical of a. Let S be the set consisting of the p, and decompose
S into minimal disjoint subsets Sl, ..., Sk such that the ideals in
Si commute mod a with those in Sj for i ~ j (cf. [7] ). The set of all
p; in a given Si ail divide the same block ideal and so k &#x3E; r. Let
b denote any fixed one of the b.. Let mi be the intersection of all
pi E Si such that b C p;. It is possible that 9Jli is not defined for all
i = 1, 2, ..., k. Suppose, however, that M1, ..., 9Jlt are the Mi

t

which are defined; t  k. Then 9l = n Mi is the radical of b. It
i=l

follows from lemma 1.1.7 that the 9Jli commute mod a. Then by
lemma 1.1.4, R = b + 9Jll ...9Jlt. There exists an integer a &#x3E; 0

such that 9lC1 Ç b. The Mi commute mod b and so M03C31 ... lR§ C b.
Set Bi = YR$ + b. By lemma 1.1.2, (M03C3i, M03C3j) = (1) for i ~ j and

so (Bi, Bj) = (1) for i ~ j. Now b c m Bi  M1 ... Mt + b  b
by lemma 1.1.4 and so b = n 58i. This is impossible for t &#x3E; 1

and so all prime ideal divisors of b are related.
r

THEOREM 1.3.4: Let a = n bi be the block ideal decomposition

of a; let n = n pj be the radical of a with expoiient 03C3; n03C3 Ç a. Let Mi

be the intersection of the prime ideals in Bi. Then the 9Jli commute
mod a and bi = IJIN + a. Furthermore bi = M03C3i + a = M03C3+03BBi + a
for any positive integer 03BB.

PROOF: It follows from lemma 1.1.8 and corollary 1.1.2 that
the Mi commute mod a. Consequently M03C3i ... M03C3r C a and a =

(M03C3i + a) = n (M03C3+03BBi + a) = n b,. The theorem then fol-

lows from lemma 1.1.6.
r

COROLLARY 1.3.1: Let a = n bi be the block ideal decomposition
i=l

o f a. Assume that all prime ideal divisors Pl, ..., fJ 8 of a commute
mod a. Then each block contains only one pr’i1ne ideal, r = s, and
f or suitable indexing, Di = p03C3i + a f or i = 1, 2, ..., r where 03C3 is
the exponent o f the radical o f a. For each ’bi, a inay be replaced by any
larger i’nteger.
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COROLLARY 1.3.2: Let a = n bi be the block ideal decontposition

of a. Ass2cme that all prime ideal divisoi-s of a commute in the ordinary
r r

sense, that is, mod (0). Then the bi i commute, a = n bi = II bi and

6t = p03C3i + a as in corollary 1.3.1.
The proof follows by a trivial argument from lemma 1.1.8 and

corollary 1.3.1.

Part II. Arithmetics of Algebras

1. Orders and Ideals.

Let o be a Dedekind ring with quotient field and A an algebra
of finite dimension n over k. It will be assumed that A has a unit
element 1 coinciding with that of k.

DEFINITION: A subring 0 of A is called an order if it contains
the unit element 1 and is a finitely-generated c-module not co-ntained
in a proper s1tbalgebra of A.

Since an order is a finitely-generated module over a Noetherian
ring, it follows that the ascending chain condition holds for sub-
modules. Consequently there exist elements ui, ..., as e D, s ~ n,
such that = (03C31, ..., 03C3s}. There also exist elements 1Jl, ..., 1JnEÍ)
and c ~ 0 in o such that every element oc E 0 has a unique repre-

n

sentation of the form « = c-1 03A3 ai~i with ai E o. If o is a principal
ideal ring the 1Ji can be chosen with c = 1. Such a basis is called a
minimal basis.

If v ~ 0 is an element in the radical N of A with Vr = 0 for
some r &#x3E; 0, then the o-module generated by the products

s

03C3i(1)vt(1)....03C3i(s)vt)s) with 03A3 t(i)  r is easily seen to be an order

containing û. If J.V =1= (0), then there exists an element v E N with
v e It follows that if an algebra possesses maximal orders then
it is semisimple. If A is semisimple and separable, then every
order can be imbedded in a maximal order (cf. [6]).

DEFINITION, A n additive subgro’up 21 o f A is called an ideal i f
(DU, UD)  U, 21 ~ k ~ (0) and there exists an element a ~ 0 in k
such that aU ~ D. If U Ç D it is said to be integral; otherwise, frac-
tional.

By virtue of the ascending chain condition, every integral ideal
of D has a unique expression as a direct intersection of block
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ideals. If U is integral and a ~ a = 9f r o, than aD ~ U and so
D/U may be regarded as an D/a-module ,vhere the operators act
in the canonical manner. The minimum condition for o/a implies
the minimum condition for o-modules U such that 91 Ç U ~ D

(cf. [10], p. 32). It follows that ail results in part 1 apply to
intégral ideals in orders.

2. Ideals generated by Ideals of o.

The main purpose of this section is to show that the block ideal

components of ideals of the form aD, wliere a is a non-zéro intégral
o-ideal, generate a multiplicative abelian group.
For a fixed prime ideal p of o let  dénote the ring of p-integers,

that is, the set of elements of the form ab-1 where a, b E o and

(b, p) = (1). If 9R is an D-ideal, set  = M.

LEMMA 2.2.1: Il W1 is an integral 8---,-ideal such that in = M ~ 
is a power of p, then D/M ~ / where thc isomorphism is canonical,
being induced by the injection nlap of D into 85.
PROOF: If x E &#x26;-5, let d be an élément of o with (1) = (d, p) =

(d, m) such that d03B1 ~ C. Then oce (d03B1, ntx ) Ç D + e. It follows
that D = Z, + . If f3 E wc ~D, let h be an élément of o with

(1) = (h, p) = (h, ni) such that hf3 E 9R. Now 03B2 E (hf3, 03BC03B2)  M and

so  ~ D = M. Then / = (D + )/ ~ D/ ~ D = D/M
,vhere tlle isomorphism is camonical.

LEMMA 2.2.2: Let m ’rartge over the set of integral D-ideals for
7Á,hich 9l ~ o either eqtials o or is a power of p. Then 03C8: R ~  is a
one-to-one mapping on,to the set of all integral D-ideals. Further1nore,
V is an isolnorphisrn with respect to sum, product and intersection.

PROOF: It is trivial tliat y is a homomorphism with respect to
sum and product. If x ~ R1 ~ R2, then there exists an element
d E 0 with (d, p) = (1) such that dx E R1 ~ R2. It follows tllat 1p is
a homomorphism with respect to intersection. If R1 ~  and
R2 ~ 91, then 911 + R2 ~  and so ome may assume R1  W2. By
lemma 2.2.1, D/R1 ~ / ~ D/R2 ,vhere tlie isomorphisms are
canonical and so ?1 = R2. Consequently is an isomorphism.
Now let Z be any integral £)-ideal. It is easily seen tliat Z == 3R
where M = I ~ D. If 9K n o is a power of p, then M is in tlie do-
main of definition of y. If 3K ~ o is prime to p, then it is easily
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seen that M = D and M, insofar as its behavior under y is concern-
ed, can be replaced by D which is in the domain of definition of 1p.
Now assume that neither of these extreme cases holds and that

r

M = n Bi where the Bi are block ideals. It is easily seen, using
i=l

lemm- a 1.2.1, that the Bi ~ o are block ideals of o. Let W be the
intersection of those Bi such that Bi n o is a power of p. Let Q
be the intersection of the rèmaining Bi. By lemma 1.1.3, 9.R=W nû.
Now  =  and since 03C8 is a homomorphism with respect to inter-
section, it follows that  = 9l. This shows that the set of images
under 03C8 coincides with the set of all integral -ideals.

r

LEMMA 2.2.3: Let aD = n Bi whei-e a is an integral o-ideal.

Then aÂD = n B03BBi where A is any positive integer.
i=1

PROOF: The lemma is trivial for 03BB = 1. Now assume a03C3-1D =
r r

n B03C3-1. By lemma 1.1.4,  B03C3i = 03A3B03C303C0(1) ... B03C303C0(r) where n

ranges over all permutations of the indices 1, 2, ..., l". Since, by
corollary 1.1.2, tlie Bi commute mod aD, it can easily be verified
that 03A3B03C303C0(1) ... B03C303C0(r)  03A3 B03C3-103C0(1) ... B03C3-103C0(r) (B1 ... Br) + ao D. This

r

implies that n B03C3i  a03C3D and the lemma follows immediately.

1,EMMA 2.2.4 : Let ~1, ..., ~n be a 1ninirnal basis for  and

suppose the congruences 03BE03C3~i - iî ~ 0 (mod p03C3) have a solution
03BE03C3 f or i = 1, 2, ..., n and for each positive integer a. Then there

exists an ele’me’nt , E Z ~ , where Z is the center of A, such that f or
a sufficiently large, 03B6 - 03BE03C3 (mod,pD).

yt n

PROOF: Suppose ~i~j 1 cijk~k and let = 03A3 aj~j. Then

03A3aj(cijk - cjik) ~ 0 (mod p03C3) for all i, k. Set cijk - cjik =

bi+(k-1)n,j and let n be the local prime of Õ. Then

where i = 1, 2, ..., n2 and yi E Õ. By the theory of elementary
divisors there exists a unimodular transformation which maps

a; into a’j, say, for j = 1, 2, ..., n and transforms the system (1)
into the form:
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where ei 0 for i = 1, 2, ..., 19 amd yz E o. For a sufficiently large,
a’1, ..., a’r are in  and (o, . ’.., 0, a’r+1, ..., a’n) affords a solution
to the homogeneous equations corresponding to (2). Now

r il

ai = 03A3dija’j + 1 dija’j for i = 1, 2, ..., n with dij ~ o. The ele-

ment 03B6 = 03A3 ai~i where ai == S dij a’j has the required property.
r

Now let PO = n 58i where the 58i are block ideals. By lemma

2.2.2, pD = (:) 58i where the Bi are block ideals. By lemma 2.2.3,

p03C3D =  Bi03C3. By theorem 1.1.1, there exist elements e1, ..., er in
i=i

Û such that 1 = e’1 + ... + e’r with e’ ~ 0 (mod 03C3j) for i ~ j
and ei = 1 (mod B03C3i). It is easily verified that the e’ are in the
center Z mod f1GÛ and so, by taking a sufficiently large and apply-
ing lemma 2.2.4, one can obtain elements ei = ez (mod p) with
ei E Z ~ . It follows from this result, together with lemmas 2.2.2
and 1.1.8, that the Bi commute. The inverse of an ideal of Bi is
B-1i = f1-1 Il 58 j. If pi and p2 are distinct prime ideals of o, then,

by lemma 1.1.8, every block ideal component of p1D commutes
with every block ideal component of p2D. From these remarks
one readily deduces

THEOREM 2.2.1: The block ideal compoîtents of ideals aZ, where
a is an integral ideal of o, generate an abelian group. The represe.n-
tation of an elernent of this group as a product of powers of distinct
generators is unique.
THEOREM 2.2.2: Il Z is the centei,, of A, then D, = Z ~ D is an

r

orde1’ of Z. If pD =  Bi 1,vhere p is a prÍlne ideal of o and the Bi
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r

are block ideals, then pD =  Ii where 1, = Bi ~ D are block
i=l

ideals of o. Furthermore, Bi = zjo.

PROOF: It is trivial to verify that Q is an order of Z. From the
remarks preceding theorem 2.2.1, it follows that the %i are relati-
vely prime. It is easily seen using lemma 1.2.1, that the Zi ~  are
block ideals of v and thatB%i n o = p. Now p-1(pD ~ D)  0 and

r r

so pD  D = pD. It follows that pD = n Ii. Now pD = n %iÛ and
i=l i=l

so Bi = %iD by lemma 1.1.6. If Zi = I’i  I"i for some i, then
Bi = I’iI"iD = I’iD  %’;ü, a contradiction. The theorem fol-
lows immediately.
THEOREM 2.2.3: Let U be an integral 0-ideal and let (2In 0 ) 0

r

=  Bi where the Bi are block ideals. Then U can be expressed

uniquely as a product 2I = 2Il ... 2Ir where Ui divides Bi, Ui=(U, Bi)
and the Ui commute.
The proof follows easily from Theorem 2.2.1 and lemma 1.1.8.

3. Maximal Orders.

The results of the last section permit a development, different
from those usually given, of the prime ideal decomposition theorem
for maximal orders.

LEMMA 2.3.1 : Il a block o f pO, where p is a prime ideal o f 0,
contains a completely regular prime ideal 03B2, then the corresponding
block ideal B is a power of 03B2. Furthermore, every ideal which divides
a power of 03B2 is itsel f a power of 03B2.
PROOF: The ideal B’ = 03B2-1B is integral since 13 divides B. If

B = B’, then 03B203BBB = B for every integer A &#x3E; 0, which is impos-
sible by virtue of the ascending chain condition. A completely
regular prime ideal commutes with all other prime ideals (cf. [6])
and so by corollary 1.3.1, B = 03B203C3 + pD for some a &#x3E; 0. If

58 C 58’ C: 03B2’ for some prime ideal 03B2’, then 13 = 03B2’ and, proceeding
by induction, it is easily shown that 0 = 03B203BC for some p, &#x3E; 0.

Similarly, if 03B203BD  U for some ideal U with v &#x3E; 0, then 21 = for
some 03BB &#x3E; 0.

THEOREM 2.3.1: IF D is a maximal order, then every ideal can
be expressed uniquely as a product of powers of distinct prime ideals.
The ideals of 0 f orm a multiplicative abelian group generated by
the prime ideals.
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PROOF: ln a maximal order, all prime ideals are completely
regular (cf. [6]). Let U be an integral C-ideal. Then (U~ )D =
= 03B203BC11 ... 13,. where the prime ideals 13, i commute by virtue of
either theorem 2.2.1 or the fact that completely regular prime
ideals commute. Then by theorem 2.2.3 and lemma 2.3.1,
21 == 03B203BD11 ... 03B203BDss with 03BDi ~ 03BCi. The extension to fractional ideals
and the uniqueness proof proceed as usual.
At this point it is easily shown using theorem 2.2.2 that if A is

central simple over k and D is a maximal order of A, then pD is a
power of a prime ideal where p is any prime ideal of o. This result
is due to Brandt [3]. As another application, consider the case of
a simple algebra A, not necessarily central, 1;here k is a field with
a discrete non-trivial rank one valuation. Let D be a maximal
order with respect to the local integers of k. Then, since k has only
one prime, it is easily shown that every ideal of 0 has the form 13,1
where fl§ is tlie unique prime ideal in 0. A development of this
result for the case where k is a p-adic field has been given by
Hasse [8].

4. The Discriminant.

In this section it will be assumed tliat A is semisimple and se-
parable over k Let op denote the ring of p-integers of k and set
Dp = opc. Let 03C31, ..., an be a minimal basis for Dp with ai E Ü
for i = 1, 2, ..., n. If 03B11,...,03B1n ~ A then the discriminant

(03B11, ..., 03B1n) = det [S(03B1i03B1j)] where [S(03B1i03B1j)] is the matrix ivith 1 as
row index, j as column index, and where S(03B1) denotes the trace of
ce in the right (or left) regular représentation of A. It is known that

if Pi = E ci,7-, with cij ~ k for i = 1, 2, ..., ït, then (03B21, ..., 03B2n)
= (det [cij )2d (03B11, ..., 03B1n). It is easily seen that if 03B11, ..., 03B1n ~ D,
then (03B11, ..., 03B1n) ~ o. The p-component Dp of the discriminant of
is defined to be the greatest power of p which divides d (a,, .... 03C3n).

LEMMA 2.4.1: 1Jp is the greatest power of p zrvhieh contains all
ele1nents d (03B11, ...., 03B1n) f or 03B11, ..., 03B1n ~ D.

PROOF: Set o. (03C31, ..., 03C3n) = :p).q where p does not divide q.
If ai E S, then «i == S cij03C3j with cij E op. Since the denominator of

det [cij] is prime to p, it follows that (03B11, ..., 03B1n) ~ p03BBE.
Tlie integral o-ideal S) gencrated by the set of all éléments

(03B11, ..., 03B1n) for 03B1i ~ D is called the disci-iminant of ü. From lemma
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2.4.1 it follows that T = 03A0Dp and that there are only a finite
P

number of terms Dp ~ o.

THEOREM 2.4.1: Let IZ be the discriminant o f û and D* the
discriminant of an order D* with 0* ’D D. Then D* D i) i f and only
if D* ~ D.

PROOF: It suffices to,.show that % = D* implies D = D*.
Suppose IZ = D*. Let 03C31, ..., Qn be a minimal basis for Dp with
03C3i e 0 and let a*, ..., 03C3*n be a minimal basis for Dp* with 03C3*i ~ 0*.
Then ai = 03A3 cij03C3*j for i = 1, 2, ..., n and where cije op. Since

Dp = D*p, it follows that (det [cij])-1 e Op and so Dp = Dp for all
primes p. For a E D*, let a (a ) be the set of elements dE o such that
da E D. If « E D*, then for each prime p there exists an element
h E o with (h, p) = (1) such that hoce D. It follows that q(03B1) = o
for all 03B1 ~ 0* and so D = D*.
The ring Dp/pDp can be construed as an algebra over op/pop. Assum e

now- that k has finite residue rings, that is, o/a is finite for every
integral ideal a of k. Then if ûp/f1Üp is semisimple, the centers of the
simple components are separable extensions of the ground field
and so the algebra Dp/pDp is separable and has a non-zero discri-
minant (cf. [10]). Therefore Dp/pDp is semisimple if and only
if Tp = o where 2) = 03A0Dp is the discriminant of D.

P
If D is maximal, a prime ideal p of k is said to be ramified in D

at 03B2i if in its prime ideal decomposition, pD = 03B2e11 ... 03B2ess, ei is

greatér than 1.

From the preceding remarks, together with lemma 2.2.1 and
theorem 1.1.1, the following result is readily deduced.

THEOREM 2.4.2: Let A be a separable algebra over k and assume
that k has finite residue rings. Let D be an arbitrary order of A and
let p be a prime ideal of k. Then the algebra 0 p/pDpover op/pop is semi-
simple i f and only i f Dp = o where i) = 03A0Dp is the discriminant of

P
D. In particular, if D is maximal then a prime ideal ,p o f k is ramified
in 0 i f and only if p divides T.

5. The Conductor.

If an order D is properly contained in another order D*, it is
natural to study the relation between the arithmetic of D and that
of D*. Of particular interest is the case where 0* is maximal.
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Using the fact that orders are finitely-generated o-modules, it is
easily shown that if D C 0* then there exist elements c ~ 0 in o
such that c0* C 0. It follows that there exist non-zero D*-ideals
which lie in D. The ideal generated by the set of all such ideals is
called the conductor J of D with respect to O*. An D-ideal 21 is said
to be regttlar with respect to D* i f (U, J) = û. An D*-ideal  is

said to be regular zvith respect to D if (, ) = 0*. With each
integral D-ideal U can be associated the integral D*-ideal {U} =
= D*3tQ*; with each integral D*-ideal  can be associated the

integral D-ideal OE° = ~ 0.

LEMMA 2.5.1: Il the D-ideal 21 is regular, then so is {U}. Il the
D*-ideal  is regular, then so is . In this case {U} = U and

{} = .
PROOF: If 21 is a regular D-ideal it is clear that {U} is also re-

gular. If  is a regular D*-ideal then there exist elements y E OE,
03B4 ~ J such that y + 03B4 = 1. But then y is clearly in 0 and so  is

regular. The last statement follows from the relations {U} =
(U, J){U} (U, J)  U and  = ({}, J)({), J)  {}.
THEOREM 2.5.1: The mapping U ~ {U} is a one-to-one mapping

of the set of regular 0-ideals onto the set of all regular 0*-ideals. It is
an isomorphism with respect to sum, product and intersection.

PROOF: The first statement follows from lemma 2.5.1. If 2Il .
and U2 are regular 0-ideals, then so are (U1, U2) and, by lemma
1.1.2, 2fln X2 and U1U2. It is easy to verify that the mapping
preserves sums and intersections. If coE 0*, ell E U1 and a2 E U2,
then 03B1103C903B12 ~ 03B11(U2, J)03C903B12(U1, J)  {U1U2} and so {U1U2} = {U1}.{U2}.
This completes the proof.
THEOREM 2.5.2: Let D be an order contained in a maximal

order D* and assume that A is separable. Let 1) and D* be the
discriminants of D and 0* respectively. Let J be the conductor of D
with respect to D*. Then ’Zp * D Dp i f and only if p is divisible by
a prime ideal divisor in û* o f J.
PROOF: Let J’ be the conductor of Dp with respect to Dp*. It

will be shown that J’ = Jp. If el E J’, then there exists an élément
a E o with (a, p) = (1) such that ael E D. Then 0* (aoc)O* C Op nD*
Now Dp~ D* is a finitely-generated o-module and so it contains
elements Ci, ..., as such that Dp ~D* = {03C31,..., 03C3s}. Let b be
an element of o with (b, p) = (1) such that b03C3i ~ D for i = 1, 2, ...,
r. Then D*(aboc)D*  D and so 03B1 ~ Jp. Clearly Jp  J’ and so
§’ == Sp. Let J = 03B203BB11 ... 03B203BBss s be the prime ideal decomposition
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of î5- in D*. Set pi = 03B2i ~ o. This is clearly a prime idéal of k.

If 1 ~ Jpi i then 1 = 03A3 c(j)i03C0(j)i where c(j)i ~~ pi i and 03C0(j)i ~ 03B2i i for

j = 1, 2, ..., m. Now choose dE o such that (d, pi) = (1) and
m

dc(j)i ~ o for j = 1, 2, ..., m. Then d = 03A3 dc(I)n(l) E 03B2i, a contra-
diction. Therefore Jpi ~ Dpi. It follows that Dpi* ~ Dpi and so,
by theorem 2.4.1, Dpi* ~ Dpi. On the other hand, if p is a prime
ideal of k not among pl, ..., p,,, then Jp = D*p. Therefore Op* = Dp
and so Dp* = Dp.
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